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CHAPTER 1 INTRODUCTION

1.1 Background

Pavement conditions data for Oklahoma show that 46% of major roads in the state are
in poor or mediocre condition due to weak subgrade soils, as one of the main factors (ODOT,
2007). Driving roads in need of repairs threaten public safety and cost Oklahoma motorists
over $1 Billion annually in extra vehicle repairs (OAPA, 2005). In the last few decades,
pavement engineers have been challenged to build, repair and maintain pavement systems
with enhanced longevity and reduced costs. Specifically, efforts have been made to improve
the design methodology (AASHTO, 2004) and to establish techniques for modification of
highway pavement materials. Cementitious stabilization is considered one of these
techniques; it enhances the engineering properties of subgrade layers, which produces
structurally sound pavements.

Cementitious stabilization is widely used in Oklahoma and elsewhere as a remedial
method to ameliorate subgrade soil properties (e.g., strength, stiffness, swell potential,
workability and durability) through the addition of cementitious additives. It consists of
mixing stabilizing agents such as lime, class C fly ash (CFA) and cement kiln dust (CKD)
with soil. In the presence of water, these agents react with soil particles to form cementing
compounds that are responsible for the improvement in engineering properties such as
strength and stiffness. However, the degree of enhancement is influenced by many factors
such as stabilizing agent type, the type of soil to be stabilized, curing time, the required
strength, the required durability, cost, and environmental conditions (AFJMAN, 1994;

Parsons et al., 2004).
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With the movement toward implementation of the new Mechanistic-Empirical
Pavement Design Guide (MEPDG) (AASHTO, 2004), new material properties required for
critical performance prediction of cementitiously stabilized layers are recommended. These
properties include resilient (M;) or elastic (Mg) modulus, unconfined compressive strength
(UCS), and moisture susceptibility. The evaluation of these inputs is required to pursue a
Level-1 (most accurate) design under the hierarchical scheme. For a Level-2 (intermediate)
design, however, design inputs are user selected possibly from an agency database or from a
limited testing program or could be estimated through correlations (AASHTO, 2004). Level-
3, which is the least accurate, requires only the default values and is generally not

recommended.

1.2 Previous Studies

Cementitious stabilization using lime, CFA and CKD stabilization have been studied
extensively by many researchers (McManis and Arman 1989; Baghdadi 1990; Zaman et al.
1992; Misra 1998; Little 2000; Miller and Zaman 2000; Qubain et al. 2000; Parsons and
Kneebone 2004; Kim and Siddiki 2004). Chang (1995) investigated the resilient properties
and microstructure of a fine grained soil (Lateritic soil) stabilized with CFA and lime.
Strength was evaluated after a 7-day curing period by performing the UCS tests. Specimens
were compacted at near OMC in a mold with a diameter of 38 mm and a height of 100 mm.
The resilient modulus tests were performed in accordance with the AASHTO T 274-82 test
method. Results showed that the M, values varied between 125 to 250 MPa. But, no attempt
was made to study the moisture susceptibility of specimens.

Little (2000) reported that the long-term effect of lime stabilization induces a 1,000

percent or more increase in M; over that of the untreated soil. The AASHTO T 294 method



was used to determine the resilient modulus values. Values of back calculated (from ficld
falling weight deflectometer testing) M, typically falls within a range of 210 MPa and 3,500
MPa. The strength values determined for lime-stabilized soil was reported as high as 7,000 to
10,000 kPa. TST was also performed to evaluate the moisture susceptibility on 7-day cured
specimens. The study by Little (2000) addressed most of the properties that were evaluated in
the present study. Also, that study addressed the desigﬁ inputs for the MEPDG (Mechanistic-
Empirical Pavement Design Guide). However, it was carried out on predominantly fine
grained soils, encountered in Texas. In addition, that étudy was limited to lime-stabilized
subgrade soils and no attempt was made to compare‘with other additives.

Further, Parsons and Milburn (2003) conducted a series of tests, namely UCS,
modulus, freeze-thaw, wet-dry and swell to evaluate the relative performance of lime, cement,
CFA and an enzymatic stabilizer. These stabilizers were combined with a total of seven
different soils having USCS classifications of CH, CL, ML and SM. Lime- and cement-
stabilized soils showed the most improvement in performance for multiple soils, with CFA-
stabilized soils showing substantial improvement. The results also showed that for many soils,
more than one stabilization options may be effective for the construction of subgrade. No
attempt was made to examine the moisture susceptibility.

In another study by Parsons and Kneebone (2004), eight different soils with
classifications of CH, CL, ML, SM and SP were tested for strength, swell and durability
(freeze-thaw, wet-dry, and leach test) to evaluate the relative performance of CKD as a
stabilizing agent. Results were compared with previous findings for the same soils stabilized
with lime, cement, and fly ash. Substantial increase in strength and decrease in swell were

found with the addition of CKD. It was also reported that the CKD treated soil samples’



performance in wet-dry testing was similar to that for lime, fly ash and cement treated soils.
However, CKD-stabilized samples were not as durable in freeze-thaw testing as lime, fly ash
and cement treated soil samples. However, no attempt was made to evaluate and compare the
resilient modulus, which is one of the critical pavement performance parameters (AASHTO
2004).

In a recent study, Khoury and Zaman (2007) evaluated the laboratory performance of
three different aggregates namely, Meridian, Richard Spur and Sawyer stabilized with CKD,
CFA and fluidized bed ash (FBA). Cylindrical specimens of stabilized aggregates were
subjected to 0, 8, 16 and 30 freeze-thaw (FT) cycles after 28 days of curing. All the specimens
were also tested for resilient modulus after FT cycles. It was found that the CKD-stabilized
Meridian and Richard Spur aggregates exhibited a higher reduction in M; values than the
corresponding values of CFA- and FBA-stabilized specimens. The CFA-stabilized Sawyer
specimens performed better than their CKD- and FBA-stabilized counterparts.

As noted in the preceding paragraphs, several pertinent studies have been conducted in
the past to evaluate the engineering properties of soils stabilized using different cementitious
additives. A summary of different studies is presented in Table 1.1. A limited number of
studies (e.g., Little 2000, Arora and Aydilek 2005), however, attempted to address all the
required design inputs for the MEPDG, namely, M,, Mg, UCS and long term performance
parameters namely, moisture susceptibility (durability) and three-dimensional (3-D) swell.
Although some of the aforementioned studies are relevant to the present study, it is important
to note that the mineralogical and textural characteristics of soils in Oklahoma are different

than those in other regions, and thus results from other studies may not be directly used for



the design of pavements in Oklahoma at Level 1 or Level 2. The experimental program

undertaken in the present study is an attempt to address this concern.

1.3 Objectives

The primary objective of this study is to determine engineering properties of
cementitiously stabilized common subgrade soils in Oklahoma for the design of roadway
pavements in accordance with the AASHTO 2002 PDG. These properties include resilient
modulus (M;), modulus of elasticity (Mg), moisture susceptibility and permeability. To this
end, four different types of soils, namely, Port Series (silty clay), Kingfisher Series (lean
clay), Vernon Series (lean clay), and Carnasaw Series (fat clay) were stabilized with hydrated
lime, Class C Fly Ash (CFA), and Cement Kiln Dust (CKD). Stabilized soil specimens were
cured for 28 days and tested for different properties. The more specific tasks include the
following:

(1) Develop moisture-density relationships for different percentages of soil-additive
mixtures.

(2) Determine M, and Mg, values of 28-day cured stabilized specimens.

(3) Evaluate the coefficient of permeability of selective stabilized specimens.

(4) Conduct suction tests on selective specimens using filter paper technique.

1.4 Organization of Report

A description of properties of soil and stabilizers is first presented in Chapter 2.
Chapter 3 provides detailed information on the laboratory experiments used in this study,
followed by the sample preparation method. The final results are presented and discussed in

Chapter 4. This includes the pH, M,, Mg, UCS, moisture susceptibility and 3-D swell values.



Additional results including soil suction, permeability and mineralogical studies are presented
in Chapter 5. And lastly, the conclusions and recommendations are given in the final chapter —

Chapter 6.



Table 1.1 A Summary of Relevant Laboratory Studies on Soils Stabilized with Different

Additives

Reference Type of Type of Parameters/Tests” (Statistical
soil® additive Analysis for M,: Yes/No)

Haston and Wohlgemuth (1985) CL Lime UCS (No)

McManis and Arman (1989) A-3, A-2-4 FA UCS, Durability (F-T), R (No)

Baghdadi (1990) Kaolinite clay CKD UCS (No)

Zaman et al. (1992) Clays CKD UCS (No)

Chang (1995) Lateritic soil FA, Lime UCS, M, (No)

Achampong (1996) CL,CH PC, Lime UCS, M, (Yes)

Misra (1998) Clays FA UCS (No)

Prusinski et al. (1999) Clays PC, Lime UCS, CBR, Shrinkage, Durability (W-D, F-

T, Leaching) (No)

Prusinski and Bhattacharja (1999)  Clays Lime UCS (No)

Little (2000) Fine grained Lime UCS, M,, TST, Swell (No)
soils

Miller and Azad (2000) CH, CL, ML CKD UCS (No)

Miller and Zaman (2000) Shale, Sand CKD CBR, UCS, Durability (F-T, W-D) (No)

Qubain et al. (2000) CL Lime UCS, M, (No)

Zia And Fox (2000) Loess FA UCS, CBR, Swell potential (No)

Senol et al. (2002) Clays FA UCS, CBR, M, (No)

Parsons and Milburn (2003) CH, CL, ML, Lime, PC, CFA, UCS, Modulus, Durability (F-T, W-D),
SM Enzymatic stabilizer ~ Swell (No)

Kim and Siddiki (2004) A-4, A-6, A-7-6  Lime, LKD UCS, CBR, volume stability, M; (Yes)

Prabakar et al. (2004) CL, OL, MH FA UCS, CBR, Shear strength parameters,

Free swelling (No)

Arora and Aydilek (2005) SM FA UCS, CBR, M,, Durability (F-T) (Yes)

Barbu and McManis (2005) CL, ML Lime, PC UCS, Cyclic Triaxial test, TST (No)

Hillbrich and Scullion (2006) A-3 PC M,, Seismic Modulus (Yes)

Osinubi and Nwaiwu (2006) CL Lime UCS (No)

Puppala et al. (2006) CH Lime with UCS, free swell, linear shrinkage strain

polypropylene fiber

(No)

" Soils according to USCS and AASHTO classification; © pH, Compaction and Adtterberg limit tests are not included in the list
M;: Resilient Modulus test; TST: Tube Suction Test; CBR: California Bearing Ratio; F-T: Freeze-Thaw; W-D: Wet-Dry

R: Soil support resistance value FA: Fly Ash; PC: Portland Cement; CKD: Cement Kiln Dust; LKD: Lime Kiln Dust

R: Soil support resistance value FA: Fly Ash; PC: Portland Cement; CKD: Cement Kiln Dust; LKD: Lime Kiln Dust



CHAPTER 2 MATERIALS SOURCES AND PROPERTIES

2.1 General

This chapter is devoted to presenting the sources of materials that were used in this
study. The subgrade soils were collected from different counties in Oklahoma and the
stabilizing agents were shipped to our laboratory from different agencies. The moisture-
density tests were conducted on raw and stabilized soils to determine the optimum moisture

content (OMC) and maximum dry density (MDD). These results are presented in this chapter.

2.2 Soil Types and Properties

As noted earlier, four different soils were used in this study: (1) Port series (P-soil);
(2) Kingfisher series (K-soil); (3) Vernon series (V-soil); and (4) Carnasaw series (C-soil).
Bulk soil samples were collected from different counties located in Oklahoma. More than 40
plastic bags, each having a weight of approximately 20 kgs (44 1bs), were transported to the
Broce Laboratory and stored for processing and testing. After collection, these soils were air
dried in the laboratory and processed by passing through the U.S. standard sieve #4. Figures
2.1, 2.2 and 2.3 photographically depict the field sampling, processing and storage of these
soils, respectively. A summary of the soil properties determined in the laboratory and the
corresponding standard testing identification are presented in Table 2.1. The chemical

properties of the soils determined using X-ray Fluorescence analysis are given in Table 2.2.

2.2.1 Port Series

Port series soil (P-soil) is found in 33 counties and it covers about one million acres in
central Oklahoma. Bulk samples were collected from a location in Norman (Cleveland

County), Oklahoma. According to the Unified Soil Classification System (USCS), P-soil is



classified as CL-ML (silty clay with sand) with a liquid limit of approximately 27 and a
plasticity index (PT) of approximately 5. The soil is inactive with an activity of approximately
0.24 and a pH of 8.91. Particle size analysis showed the percentage passing U.S. Standard No.
200 sieve as 83%. For comparison, P-soil was also tested at Oklahoma DOT materials

division soils laboratory. A liquid limit of 26 and plastic limit of 19 (PI = 6) was reported.

2.2.2 Kingfisher Series

Kingfisher series soil (K-soil) belongs to the Cleveland County, Oklahoma. It is
classified as CL (lean clay), according to the Unified Soil Classification System (USCS) with
an average liquid limit of approximately 39% and a PI of approximately 21. The soil is
inactive with an activity of approximately 0.47 and a pH of 8.82. Using the Oklahoma DOT
Specification number OHD L-49 (ODOT, 2006) no soluble sulfates were detected within a
detection range of greater than 40 ppm. Particle size analysis showed the percentage passing

U.S. Standard No. 200 sicve as 97%.

2.2.3 Vernon Series

Vermon series soil (V-soil) was collected from Glass Mountains slope on US 412 in
Major County (northwestern Oklahoma). Selection of this soil was based on the soluble
sulfate content measured in this soil. Soluble suifate content in the soil was measured using
the Oklahoma Department of Transportation procedure for determining soluble sulfate
content: OHD L-49 (ODOT, 2006). This soil has a sulfate content of 15,400 ppm (>10,000
ppm). Physical properties of this soil were determined from Atterberg limit test, hydrometer
tests, and standard Proctor compaction tests. As per the Unified Soil Classification System

(USCS), this soil is classified as lean clay (CL), with an average liquid limit of approximately



37 and a PI of approximately 11. The soil is inactive with an activity of approximately 0.28
and a pH of 8.14. Particle size analysis showed the percentage passing U.S. Standard No. 200
sieve as approximately 100%. For comparison, V-soil was also tested at Oklahoma DOT
materials division soils laboratory. A liquid limit of 39 and plastic limit of 25 (PI = 15) was

reported.

2.2.3 Carnasaw Series

Carnasaw series soil (C-soil) with a high PI value of 29 was sampled from on-ramp
junction of SH 52 and NE 1130™ Avenue in Latimer County. This soil is classified as fat clay
(CH) according to USCS with a liquid limit of approximately 58. C-soil is acidic in nature
with a very low pH value of 4.17. In addition, this soil is also having sulfate content of 267
ppm which is lower than 2,000 ppm; Petry (1995) suggested that soils containing sulfate
contents greater than 2,000 ppm have the potential to cause swelling due to calcium-based
stabilizer. The soil is having an activity of approximately 0.69 and a low pH of 4.17. Particle
size analysis showed the percentage passing U.S. Standard No. 200 sieve as approximately

94%.

2.3 Additive Types and Properties

In this study, hydrated lime, class C fly ash (CFA), and cement kiln dust (CKD) were
the main additives, also called as stabilizers or stabilizing agents (Figure 2.4). Many
properties of soils and stabilizing agents are related with the silica/sesquioxide ratio (SSR)
(Winterkorn and Baver 1934; Fang 1997) as:

X

SSR =

.,z
B C 2.1)
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where, x is the percent of SiO,, y is the percent of AL O, z is the percent of Fe;03, 4 is the
molecular weight of SiO, (60.1), B is the molecular weight of Al,O3 (102.0), and C is the
molecular weight of Fe,Os (159.6). Hydrated lime (or lime), class C fly ash (CFA), and
cement kiln dust (CKD) were used. Hydrated lime was supplied by the Texas Lime Company,
Cleburne, Texas. It is a dry powder manufactured by treating quicklime (calcium oxide) with
sufficient water to satisfy its chemical affinity with water, thereby converting the oxides to
hydroxides. CFA from Lafarge North America (Tulsa, Oklahoma) was brought into well-
sealed plastic buckets. It was produced in a coal-fired electric utility plant. CKD used was
provided by Lafarge North America located in Tulsa, Oklahoma. Sealed buckets were shipped
to our laboratory from Tulsa, Oklahoma. It is an industrial waste collected during the
production of Portland cement. The chemipal properties of the stabilizing agents are presented
in Table 2.3. From the aforementioned chemical properties (Table 2.3), differences between
the chemical composition and physical properties among the selected additives are clearly
evident. These differences will lead to different performance of stabilized soil specimens as
reported by Chang (1995), Parsons and Milburn (2003), Kim and Siddiki (2004) and Khoury

and Zaman (2007).

2.4 Moisture-Density Test

In the laboratory soil was mixed manually with stabilizer for determining moisture-
density relationship of soil-additive mixtures. The procedure consists of adding specific
amount of additive, namely, lime (3%, 6% or 9%) or CFA (5%, 10% or 15%) or CKD (5%,
10% or 15%) to the processed soil. The amount of additive was added based on the dry

weight of soil. The additive and soil were mixed manually to uniformity, and tested for
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moisture-density relationships by conducting Proctor test in accordance with ASTM D 698

test method.

2.4.1 P-soil and Additive Mixtures

The moisture-density test results (i.e., OMCs and MDDs) for P-soil are presented in
Table 2.4. The moisture content was determined by oven-drying the soil-additive mixture.
The OMC and MDD of raw soil was found to be 13.1% and 17.8 kN/m® (108.7 pcf),
respectively. In the present study, laboratory experiments showed an increase in OMC with
increasing percentage of lime and CKD. On the other hand, a decrease in the MDDs with
increasing percent of lime and CKD is observed from Table 2.4. Other researchers (e.g.,
Haston and Wohlegemuth, 1985; Zaman et al, 1992; Miller and Azad, 2000;
Sreekrishnavilasam et al., 2007) also observed effects similar to those in the current study.
One of the reasons for such behavior can be attributed to the increased number of fines in the
mix due to the addition of lime and CKD.

A higher MDD was obtained by increasing the CFA content. However, the MDD
increase diminished with the increase in CFA beyond 10%. Conversely, the OMC showed an
increase for 5% CFA and then it generally decreased with increasing CFA content. These
observations were similar to those reported by McManis and Arman (1989) for sandy silty

soil and by Misra (1998) for clays.

2.4.2 K-soil and Additive Mixtures

The moisture-density test results for K-soil are presented in Table 2.5. The OMC and
MDD of raw soil was found to be 16.5% and 17.4 kN/m’ (110.6 pcf), respectively. In the

present study, laboratory experiments showed an increase in OMC with increasing percentage
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of lime. On the other hand, a decrease in the MDDs with increasing percent of lime is
observed from Table 3. This is consistent with the results reported by Nagaraj (1964), Haston
and Wohlegemuth (1985), Ali (1992) and Little (1996). Little (1996) belicved that OMC
increased with increasing lime content because more water was needed for the soil-lime
chemical reactions. Nagaraj (1964) suggested that the decrease in MDD of the lime-treated
soil is reflective of increased resistance offered by the flocculated soil structure to the
compactive effort.

For CFA stabilization, MDD increased with increase in CFA content. On the other
hand, OMC decreased for 5 percent CFA mix and then increased for 10 and decreased again
for 15 percent of fly ash mix. A similar observation was reported by McManis and Arman
(1989), Misra (1998) and Solanki et al. (2007a). Misra (1998) reported that the increase in
MDD can be attributed to the packing of finer fly ash particles (smaller than a no. 200 sieve)
in voids between larger soil particles. This behavior of OMC was attributed to progressive
hydration of soil and fly ash mixtures and increased number of finer particles (specific
surface) in the soil-fly ash mixtures.

CKD-stabilized soil showed the same trends like lime-stabilized soil. An increase in
OMC and a decrease in MDD with increase in the percentage of additive was observed. Other
researchers (e.g., Zaman et al. 1992; Miller and Azad 2000; Solanki et al. 2007b) also
observed effects similar to those in the current study. Similar statements as mentioned for

lime-stabilization can be used to rationalize the compaction behavior of CKD-stabilized soils.

2.4.3 V-soil and Additive Mixtures

The moisture-density test results for V-soil mixed with different percentages of

additives are summarized in Table 2.6. The Proctor tests conducted on raw V-soil showed an
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OMC and MDD value of 23.0% and 16.0 kN/m® (101.9 pcf), respectively. Similar to P- and
K-soil-lime/CKD mixtures, OMC-MDD essentially showed the same trend. Hence, reasons as
mentioned in the preceding section can be used to justify the observed trends in OMC and
MDD values.

For CFA stabilization, the moisture-density results were more complex. Laboratory
experiments showed that MDD decreased with 5 percent CFA, and then increased with
increase in the percentage of additive. On the other hand, OMC decreased with the increase in

the amount of CFA, as evident from Table 2.6.

2.4.4 C-soil and Additive Mixtures

The OMC was found to be 20.3% for the raw C-soil. For lime- and CKD-stabilized
soil samples, it was evident that OMC increased and MDD decreased with increasing
percentage of lime as illustrated in Table 2.7. For CFA stabilization, Proctor results showed
that MDD decreases for 5 percent of CFA, increases for 10 percent and then again decreases
for 15 percent CFA as shown in Table 2.7. On the other hand, OMC decreased with the
increase in the percentage of CFA. Since moisture-density results of C-soil and additive
mixtures showed similar trends to other soil-additive mixtures used in this study, similar
reasons as mentioned in the preceding section 2.4.1 can be used to justify the observed OMC-

MDD trends.
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Table 2.1 Testing Designation and Soil Properties

Method Parameter/Units P-soil K-soil V-soil C-soil

ASTM D 2487 USCS Symbol CL-ML CL CL CH

AASHTO M 145 AASHTO A-4 A-6 A-6 A-7-6
Designation

ASTM D 2487 USCS Name Silty clay Leanclay Leanclay Fat clay

with sand

ASTM D 2487 % finer than 0.075 83 97 100 94
mm

ASTM D 4318 Liquid limit 27 39 37 58

ASTM D 4318 Plastic limit 21 18 26 29

ASTM D 4318 Plasticity index 5 21 11 29

- Activity 0.24 0.47 0.28 0.69

ASTM D 854 Specific gravity 2.65 2.71 2.61 2.64

ASTM D 698 Optimum moisture  13.1 16.5 23.0 20.3
content (%)

ASTM D 698 Max. dryunit 1134 110.6 101.9 103.7
weight (pcf)

ASTM D 6276 pH 8.91 8.82 8.14 4.17

OHD L-49 Sulfate content <40 <40 15,400 267
(ppm)

USCS: Unified Soil Classification System; OHD: Oklahoma Highway Department

Table 2.2 Chemical Properties of Soils used in this Study

Percentage by weight, (%)
P-soil K-soil V-soil C-soil

Chemical Compound

Silica (Si0,)° 737 607 502  47.5
Alumina (AL,O,)" 70 119 164  16.1
Ferric oxide (Fe,05)" 2.2 4.4 6.7 6.8

Silica/Sesquioxide ratio (SSR)

Si0,/(AL,Os+Fe,05) 149 7.0 4.1 3.9

Calcium oxide (CaO)* 2.9 33 35 0.1

Magnesium oxide (MgO)® 1.8 32 4.7 0.9

Sodium oxide (Na,0)* 0.8 0.8 1.0 0.2

Potassium oxide (K,0)* 1.4 2.1 4.4 2.1

Sulfur trioxide (SO5)* 00 00 1.7 0.0
Loss on Ignition 5.1 7.8 7.1 25.1
Percentage passing No. 325 54.0 88.8 94.8 87.2
UCS (psi) 31.9 276 29.0 30.5

°X-ray Fluorescence analysis
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Table 2.3 Chemical Properties of Stabilizers used in this Study

) Percentage by weight, (%)
Chemical Compound Lime CFA® CKD'
Silica (Si0g)" 0.6 ST 14.1
Alumina (AL O,)* 0.4 17.3 3.1
Ferric oxide (Fe,04) 0.3 5.8 1.4
$i0, + ALO; + Fe,05 (SAF) 1.3 60.8 18.6
Silica/Sesquioxide ratio (SSR)

Si0,/(ALOs+Fe,05) . =0 60
Calcium oxide (CaQ)* 68.6 24.4 47.0
Magnesium oxide (MgQO)* 0.7 5.1 1.7
Sulfur trioxide (SO;)” 0.1 1.2 4.4
Calcium hydroxide (Ca(OH),)" 94.5
Free lime® 94.5 0.4 85
Loss on Ig1ﬂonb 28.4 1.1 25.8
Percentage passing No. 325° 98.4 85.8 94.2
pH°® 12.58 11.83 12.55
Sulfate Content (ppm)° <40 3,280 28,133
28-day UCS® (psu) .. 48766 464.4

*X-ray Fluorescence analysis; °‘Determined independently
®ASTM C 575;°CFA: Class C Fly Ash; ‘CKD: Cement Kiln Dust

Table 2.4 A Summary of OMC-MDD of Lime-, CFA- and CKD-P-soil Mixtures
Type of  Percentage OMC _Maximum dry density

additive  ofadditive (%) kN/m’ pef
Raw 0 13.1 17.8 113.4
3 14.7 17.1 108.7
Lime 6 159 169 107.2
9 16.5 16.6 105.9
5 140  17.8 113.5
CFA 10 128  18.1 114.9
15 11.7 18.0 114.7
5 148 174 110.5
CKD 10 152 172 109.3
15 15.3 17.1 108.6

1 pef=0.1572 kN/m’; OMC: optimum moisture content; MDD:
maximum dry density; CFA: class C fly ash; CKD: cement kiln dust
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Table 2.5 A Summary of OMC-MDD of Lime-, CFA- and CKD-K-soil Mixtures
Type of  Percentage OMC Maximum dry density

additive  of additive (%) kN/m’ pef
Raw 0 16.5 17.4 110.6
3 16.1 17.0 108.4
Lime 6 16.5 16.8 106.6
9 18.5 16.3 103.8
5 13.0 17.4 110.8
CFA 10 15.3 17.4 111.0
15 15.1 17.5 111.5
5 16.9 17.3 110.2
CKD 10 17.3 17.1 108.6

15 17.6 16.9 107.8
1 pef=0.1572 kN/m’; OMC: optimum moisture content; MDD:
maximum dry density; CFA: class C fly ash; CKD: cement kiln dust

Table 2.6 A Summary of OMC-MDD of Lime-, CFA- and CKD-V-soil Mixtures
Type of  Percentage OMC Maximum dry density

additive  ofadditive (%) kN/m’ pef
Raw 0 23.0 16.0 101.9
3 254 15.6 99.5
Lime 6 259 15.3 97.4
9 26.8 14.9 95.0
5 22.6 16.0 101.6
CFA 10 21.7 16.1 102.5
15 21.2 16.2 102.9
5 24.1 15.7 100.1
CKD 10 23.5 15.8 100.3
15 23.1 15.8 100.7

1 pcf=0.1572 kN/m’; OMC: optimum moisture content; MDD:
maximum dry density; CFA: class C fly ash; CKD: cement kiln dust
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Table 2.7 A Summary of OMC-MDD of Lime-, CFA- and CKD-C-soil Mixtures
Type of  Percentage OMC _Maximum dry density

additive  ofadditive (%) kN/m’ pef
Raw 0 20.3 16.3 103.7
3 220 160 101.5
Lime 6 227 156 99.0
9 238 153 97.3
5 200 163 103.5
CFA 10 18.6 16.6 105.3
15 16.6 164 104.1
5 21.6  16.1 102.3
CKD 10 21.7  16.0 101.8

15 21.9 15.9 101.4
1 pef=0.1572 kN/m’; OMC: optimum moisture content; MDD:
maximum dry density; CFA: class C fly ash; CKD: cement kiln dust
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Figure 2.2 Processing of Soil Samples

19



Veinon Carnasaw
Series Series

Figure 2.3 Storage of Processed Soils

(a) Hydrated lime (b) Class C Fly Ash (c) Cement Kiln Dust
Figure 2.4 Photograph of Different Additives used in this Study
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CHAPTER 3 EXPERIMENTAL METHODOLOGY

3.1 General

This chapter describes the experimental methodology that was followed to evaluate
the effects of different additives on the engineering properties of stabilized soils. The
laboratory tests performed in this study placed emphasis on pH, resilient modulus (M,),
unconfined compressive strength (UCS), moisture susceptibility, and three-dimensional swell.
These tests are described in this chapter. Also, a description of sample preparation and

compaction method is included.

3.2 pH Test

The pH of soil-additve mixtures was determined using the method recommended by
ASTM D 6276, which involves mixing the solids with de-ionized (DI) water, periodically
shaking samples, and then testing with a pH meter after 1 h (Figure 3.1). This procedure was
developed to determine the lime requirements of soil. If the soil-lime-water mixture is
elevated to a point where it approaches the pH of a lime-water mixture then it is assumed that
sufficient lime is available to satisfy ion-exchange and other reactions. Since elevated pH
levels are important for promoting chemical activity, tests were conducted with each of the
soils mixed with various amounts of lime as well as CFA and CKD to investigate whether pH

would reflect the performance of stabilized soil specimens.

3.3 Resilient Modulus Test

The resilient modulus (M) tests were performed in accordance with the AASHTO T
307 test method. The test procedure consisted of applying 15 stress sequences using a cyclic

haversine shaped load with duration of 0.1 seconds and rest period of 0.9 seconds. A
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haversine load pulse, having the form of ([1-cos (8)])/ 2), is shown in Figure 3.2 and is
recognized as the best pulse shape to simulate the induced load shape in pavement layers by a
moving vehicle (NCHRP, 1997). The sample was loaded following the sequences shown in
Table 3.1. For each sequence, the applied load and the vertical displacement for the last five
cycles were recorded and used to determine the M;. A 2.23 kN (500-1b) load cell was used to
apply the load. Two linear variable differential transformers (LVDTs) were used to measure
the resilient vertical deformation. These LVDTSs were attached to two aluminum clamps that
were mounted on the specimen at a distance of approximately 50.8 mm (2.0 in) from both
ends of the specimen. The LVDTs had a maximum stroke length of 5.08 mm (0.2 in). Figure
3.3 shows a photographic view of the LVDTs mounted on a sample. A power supply was
used to excite and amplify the LVDT signals. This is consistent with Barksdale et al. (1997)
that measuring relative displacement between two points on the specimen eliminates the
extrancous deformations occurring past the ends of the specimens. A complete setup of M;
testing on stabilized subgrade soil specimen is shown in Figure 3.4.

To generate the desired haversine-shaped load and to read the load and displacement
signals, a program was written using MTS Flex Test SE Automation software, as shown in
Figure 3.5. All the data were collected and stored in an MS Excel file and a macro program in
Excel was written to process these data and evaluate the resilient modulus. Further, details of

the apparatus and the noise reduction method used are given by Khoury et al. (2003).

3.4 Modulus of Elasticity and Unconfined Compressive Strength

The new MEPDG recommends the use of Mixture Design and Testing Protocol
(MDTP) developed by Little (2000) in conjunction with the AASHTO T 307 test protocol for

determining the M, of soils stabilized with lime. The PDG also requires Mg as one of the

22



design inputs for soil-cement, cement-treated materials, lime-cement-fly ash mixtures and
lean concrete. Since no specific parameters were recommended for CFA and CKD
stabilization, it was decided to evaluate the Mg and UCS as an additional indicator of the
mechanical behavior of CFA- and CKD-stabilized specimens.

Modulus of elasticity (Mg) and unconfined compression test (UCS) tests were
conducted in accordance with the ASTM D 1633 test method. Specimens were loaded in an
MTS frame (Figure 3.6) at a displacement rate of 1 mm/min (0.05 in/min). Deformation
values were recorded during the test using two LVDTs fixed to opposite sides of and
equidistant from piston the rod with a maximum stroke length of £12.7 mm (0.5 in). The load
values were obtained from a load cell having a capacity of 97.9 kN (22 kips).

Each specimen was subjected to two unloading-reloading cycles and loaded up to
failure in the third sequence of reloading to determine the UCS. Figure 3.7 shows a typical
stress-strain curve obtained from the UCS test using unloading-reloading cycles. A straight
line “AB” is drawn through the first unloading-reloading curve, (see Figure 3.7). Similarly,
line “CD” is drawn through the other unloading-reloading curve, as shown. The average slope

of these lines is treated as the modulus of elasticity (Mg) of the stabilized specimen.

3.5 Moisture Susceptibility Test

In the current study, moisture susceptibility of stabilized specimens was evaluated by
conducting Tube Suction Test (TST). The TST was developed by the Finnish National Road
Administration and the Texas Transportation Institute to evaluate the moisture susceptibility
or the amount of “free” water present within a soil system (Syed et al., 1999). In this test the
evolution of the moisture conditions is evaluated in terms of dielectric constant using a

dielectric probe. The dielectric constant of dry soil is about 5, and the diclectric constant of air
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is about 1. The dielectric constant of “free” water is about 81. The Adek Percometer ™
(Figure 3.8) is a surface probe that operates at a central frequency of 50MHz, and is used to
measure the dielectric constants on a surface of material samples by measuring the change in
capacitance of the probe (Syed et al., 2003).

According to Syed et al. (1999) and Zhang and Tao (2006), TST is a time-efficient
procedure to determine the optimum additive amount in stabilized materials. Several other
researchers also recommended the use of TST to study the behavior of stabilized materials
(see e.g., PCA, 1992; Little, 2000; Syed et al., 2000; Guthrie, 2003; Saeed et al., 2003; Syed
et al., 2003; Barbu et al., 2004 and Solanki et al., 2008). The TST involves measurement of
capillary rise and surface dielectric values (DV) of the test specimens. In this test, the
capillary rise is monitored with a dielectric probe, which measures the dielectric properties at
the surface of the sample. The DV is a measure of the unbound or “free” moisture within the
sample. High surface dielectric readings indicate suction of water by capillary forces and can
be an indicator of a non-durable material that will not perform well under saturated or
repeated freeze-thaw conditions (Scullion and Saarenketo, 1997).

The TST procedure used in this study consists of placing M; tested specimens in an
oven at 35 + 5°C until no more significant weight changes are observed. After drying,
specimens were allowed to cool down at room temperature. Specimens were then placed on a
porous plate and covered with a membrane in an ice chest containing approximately 12.7 mm
(0.5 in.) of de-ionized (DI) water under controlled temperature (23.0 + 1.7° C) and humidity
(>96%). During wetting of specimens in DI water, the DV increased with time due to
capillary soaking of water in the specimens. Four measurements were taken along the

circumference of the sample in separate quadrants and the fifth reading was taken at the center
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of specimen and an average of all five readings was reported. Measurements were taken daily,
until the DV became constant. Figure 3.9 shows photographic view of setup used for TST.
Guthrie and Scullion (2003) suggested the following interpretation of DV for

aggregate base material:

Lower DV Upper DV Interpretation of Aggregate Base
Moisture Susceptibility

NA 10 Good

10 16 Marginal

16 NA Poor

NA: Not Applicable

It is clear from the above mentioned values that a decrease of DV from 16 to 10 makes
aggregate base material from good to poor in terms of moisture susceptibility. Thus, a
decrease in DV indicates a reduction in the moisture susceptibility of specimens. To the
authors’ knowledge, however, there are no recommended lower and upper DV values for

stabilized soil specimens.

3.6 Three-Dimensional Swell Test

Comparison of field and laboratory data obtained from oedometer tests revealed that
the laboratory results from 1-D swell tests overestimate the in-situ heave by a factor of about
3 (see e.g., Johnson and Snethen, 1979; Erol, 1992). Hence, to investigate the swelling
potential of specimens, three-dimensional (3-D) swell tests were conducted in accordance
with a procedure described by Harris et al. (2004) (Figure 3.10). The 3-D swell values were
measured by determining the height to the nearest 0.025 mm (0.001 in.) in 3 places that are
120° apart during capillary soaking of specimens for Tube Suction Test. The diameter was
measured to the nearest 0.025 mm near the top, in the middle, and near the base of each

sample using a digital vernier caliper. The three height and diameter measurements were
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averaged and the 3-D volume change was calculated (Figure 3.11). The test is normally
continued until the diameter and height changes essentially stop. In the present study,

however, for consistency 60-day swelling readings of all samples is reported.

3.7 Sample Preparation

In this study, both raw and stabilized soil specimens were compacted in accordance
with AASHTO T-307 test method (Figure 3.12). Figure 3.13 shows a photographic view of
sample preparation method. The procedure consists of adding a specific amount of additive to
the raw soil. The amount of additive (3%, 6%, or 9% for lime and 5%, 10%, or 15% for CFA
and CKD) was added based on the dry weight of the soil. The additive and soil were mixed
manually for uniformity. After the blending process, a desired amount of water was added
based on the OMC, as discussed in Chapter-2. Then, the mixture was compacted in a mold
having a diameter of 101.6 mm (4.0 in) and a height of 203.2 mm (8.0 in) to reach a dry
density of between 95%-100% of the MDD. After compaction, specimens were cured at a
temperature of 23.0 = 1.7° C and a relative humidity of approximately 98% for 28 days; 28-
day curing period is recommended by the new MEPDG (AASHTO, 2004).

A total of four replicates were prepared for each additive content, of which two
specimens were tested for M; and then followed by TST and three-dimensional (3-D) swell
test by subjecting samples to 60 days of capillary soaking under controlled temperature (23.0
+ 1.7° C) and humidity (>96%) in an ice chest. After 60 days of capillary soaking, selected
specimens were again tested for M, and then followed by Mg and UCS tests. The other two
specimens were tested for M; and then followed by Mg and UCS tests, without capillary
soaking. After UCS test broken specimens were air dried for approximately 2 days, and then

pulverized and passed through a No. 40 sieve. The finer material was reconstituted with
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moisture for 1 day, and then tested for liquid limit and plastic limit in accordance with ASTM

D 4318.
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Table 3.1 Testing Sequence used for Resilient Modulus Test

Confining

Maximum

Sequence 3 Cyclic Constant No. of Load
Number Ld0g L AxiRSUTT Stress (psi) Stress (psi) Applications
(psi) (psi)

Conditioning 6 4 3.6 0.4 500

1 6 2 1.8 0.2 100

2 6 4 3.6 0.4 100

3 6 6 5.4 0.6 100

4 6 8 7.2 0.8 100

5 6 10 9 1 100

6 4 2 1.8 0.2 100

7 4 4 3.6 0.4 100

8 4 6 5.4 0.6 100

9 4 8 7.2 0.8 100

10 4 10 9 1 100

11 2 2 1.8 0.2 100

12 2 4 3.6 0.4 100

13 2 6 5.4 0.6 100

14 2 8 7.2 0.8 100

15 2 10 9 1 100
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Figure 3.1 Setup for pH Test
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Figure 3.2 Cyclic Load used in Resilient Modulus Test
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Figure 3.4 Setup for Resilient Modulus Test (with pressure chamber)
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(a) | (b)
Figure 3.11 Three-Dimensional Swelling Measurements (a) Diameter (b) Height
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CHAPTER 4 EXPERIMENTAL METHODOLOGY

4.1 General

This chapter is devoted to presenting and discussing the results of pH, resilient
modulus (M,), modulus of elasticity (Mg), unconfined compressive strength (UCS), moisture
susceptibility and three-dimensional (3-D) swelling tests. Emphasis is placed on evaluating

the effect of lime, CFA and CKD on the aforementioned properties of stabilized specimens.

4.2 pH Test

The pH values of soil-additive mixtures were determined to investigate whether pH
would reflect the performance of stabilized soil specimens. Results are presented in Table 4.1
and are used as the primary guide for determining the amount of additive required to stabilize
each soil, as recommended by ASTM D 6276. The amount of additive selected for use in
treatment was based on the percentage required to reach an asymptotic pH value in a soil-
additive mixture. It is noteworthy that an elevated pH level is important to promote

cementitious/chemical activity (Little, 1999).

4.2.1 Effect of Lime Content

For lime, eight different percentages (i.e., 0%, 1%, 3%, 5%, 6%, 7%, 9% and 100%)
of soil-lime mix were selected for the pH test. It was found that raw lime had a pH value of
12.58. As shown in Figure 4.1, all the pH values increase with the increase in the percentage
of lime and show an asymptotic behavior after a certain percentage. In the current study, an
increase of less than 1% in pH values is assumed as starting point of asymptotic behavior. As
evident from Table 4.1, pH values started showing an asymptotic behavior with 3% lime for

P-, K- and V-soil. However, C-soil, due to acidic nature, attained asymptotic behavior at a
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higher lime content of 5%. These lime contents also provided a minimum pH value of 12.4, as

recommended by ASTM D 6276.

4.2.2 Effect of CFA Content

For CFA, nine different percentages (i.e., 0%, 2.5%, 5%, 7.5%, 10%, 12.5%, 15%,
17.5% and 100%) of soil-CFA mixes were selected for the pH test. Raw CFA gives a pH of
about 11.83, which is consistent with the results reported by Sear (2001). The results of pH
tests for the four selected soils mixed with different percentages of CFA are presented in
Figure 4.2. Tt is evident that the pH values of P-soil, and K-soil increased as the percentage of
CFA increased and attained an asymptotic behavior at 10% of CFA. On the other hand, V-soil
attélined asymptotic behavior at a higher CFA percentage (12.5%). C-soil, having a pH value
of 4.17 never attained an asymptotic behavior with CFA contents up to 17.5%. This can be
attributed to the acidic behavior of C-soil which requires higher amount of moderately basic

CFA for neutralization.

4.2.3 Effect of CKD Content

The pH values of specimens prepared with various CKD contents are presented in
Figure 4.3. Figure 4.3 shows that raw CKD specimens have a pH of 12.55, which is similar to
the results reported by other researchers (e.g., Miller and Azad, 2000 and Parsons et al.,
2004). It is also evident that the pH values of P-, K-, V- and C-soil exhibited the same trends
as CFA-soil mixtures. The mixture of P-, K- and V-soil with CKD attained asymptotic
behavior at 10%, 10% and 12.5% of CKD, respectively. The pH values of C-soil never
attained asymptotic behavior with CKD contents upto 17.5%. Hence similar reasons, as

mentioned in the preceding section, can be used to justify this performance.
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4.3 Resilient Modulus Test

The M, test results of the selected soils stabilized with lime, CFA and CKD are shown
in Tables 4.2 to 4.4. Each M; value listed in Tables 4.2 to 4.4 is an average of M; tests
conducted on four specimens. One way to observe the effect of different percentages of
additives on the resilient properties is to compare the average M; at a particular stress level
(Drumm et al. 1997). A simple and commonly model used ODOT was chosen in this study
for this purpose.

M, =k xS

In this model, the M, is expressed as a function of cyclic axial stress (Sq). The M,
values were calculated at a Sq of 6 psi and a confining pressure (S3) of 4 psi, as suggested by

ODOT (Dean 2009). The results are presented in the form of bar chart in Figure 4.4.

4.3.1 Effect of Lime Content

It is clear that M; values increased due to stabilization. This increase, however,
depends on the type of soil. For example, 3% lime provided an increase of approximately
435%, 1,647%, 914% and 123% with P-, K-, V- and C-soil, respectively. This improvement is
maximum with K-soil, however, a reduction in M; values was observed beyond a certain
percent (Figure 4.4). For example, K-soil specimens stabilized with 9% lime showed 28
percent decrease in M; values as compared to specimens stabilized with 6% lime. This is
consistent with other studies (Haston and Wohlgemuth, 1985; Petry and Wohlgemuth, 1988;
Osinubi and Nwaiwu, 2006) that an increase in lime beyond 5% results in lower strength
values. One explanation is that excess lime behaved as low strength filler, effectively

weakening the lime-soil mixture (Osinubi and Nwaiwu, 2006).
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4.3.2 Effect of CFA Content

From Table 4.3 and Figure 4.4, one can see that the average M, value increased with
the increase in the percentage of CFA. The increase in M, values with increased amount of
CFA is consistent with the studies conducted by other researchers such as McManis and
Arman (1989), Chang (1995), Misra (1998), Senol et al. (2002), Mir (2004), and Arora and
Aydilek (2005). It is evident from Figure 4.4 that for the percentages used in this study, 15%
CFA-stabilized specimens showed a maximum increase in M; values of approximately 983%,
1,449%, 1,203%, and 215% for P-, K-, V- and C-soil specimens, respectively, as compared to
raw soil. For 5% and 10% CFA, K-soil specimens showed highest improvements of
approximately 553% and 1319%, respectively. Hence, K-soil showed the highest

improvements with CFA stabilization.

4.3.3 Effect of CKD Content .

Figure 4.4 summarized the effect of CKD on M;. Results showed that M, increased
with the increased percentage of additive; this is consistent with Zhu (1998), Miller and Azad
(2000), Parsons et al. (2004), Khoury (2005), Solanki et al. (2007a). For example, the M,
values of 15% CKD-stabilized specimens increased as much as 1,963%, 2,998%, 2,001%, and
691% for P-, K-, V- and C-soil, respectively. As depicted in Figure 4.4, a large increase in
average M, can be observed when the CKD content is increased from 0 to 5%, 5 to 10% and
10 to 15%. This rate of increase in M, values is the highest between 5% and 10% CKD. For
example, this increase is 341%, 262%, 352% and 103% for P-, K-, V- and C-soil,
respectively. This finding indicates that CKD showed best performance with K-soil. In the

present study, CKD treatment (>10%) resulted in the highest M; values (Figure 4.4).
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To study the comparative effectiveness of lime, CFA and CKD on the four soils,
graphs of percent improvement in M; values vs percentage of additive were plotted (Figure
4.5 — 4.8). For all the four soils used in this study, it is clear, in general, that at lower
application rates (3% to 6%), the lime-stabilized soil specimens showed the highest
improvement in the M, values. At higher application rates (10% to 15%), however, the CKD
treatment provided the maximum enhancements. Overall, 15% CKD-stabilized specimens
showed the highest improvement for all the four soils. In addition, stabilization of K-soil
resulted in the maximum enhancement in M, values (Figure 4.6). On the other hand, C-soil
specimens showed much lower improvements in M; values, as shown in Figure 4.8. One of
the explanations could be differences in the pH values. For example, raw K- and C-soil are
having the highest (pH = 9.07) and the lowest (pH = 4.17) pH values, respectively, among all
the four soils used in this study (pH = 4.17) of C-soil.

It is believed that the difference in M; values are attributed to the differences in
physical and chemical properties of the additives presented in Tables 2.3, which leads to
various pozzolanic reactions. The pozzolanic reactivity of a cementitious additive depends on
the following four properties: (1) silica/sesquioxide ratio (SSR); (2) percentage of additive
passing No. 325 sieve; (3) loss on ignition or carbon content; and (4) alkali contents or the
free lime content that will eventually contribute to the alkali content (NCHRP 1976; Bhatty
and Todres 1996; Zaman et al. 1998; Parsons et al. 2004; Khoury 2005). In this study, the
highest M; value of 15% CKD-stabilized specimen after 28-day curing can be attributed to the

CKD characteristics such as high SSR and high free lime content (as shown in Table 2.3).
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4.4 Modulus of Elasticity and Unconfined Compressive Strength

The variation of modulus of elasticity (Mg) and UCS values with the additive content
is shown graphically in Figures 4.9 and 4.10, respectively. The UCS values were found to be
33, 28, 24 and 30 psi for the raw P-, K-, V- and C-soil, respectively. In general, the trend of
the behavior of Mg and UCS values for different percentages of additives is the same as that
observed for M; values. Hence, similar reasons, as mentioned in the preceding sections, can

be used to justify this performance.

4.4.1 Effect of Lime Content

As depicted in Figure 4.9, in lime-stabilized specimens an increase of approximately
186%, 516%, 436% and 72% in Mg values was observed for 3% lime-stabilized P-, K-, V-
and C-soil specimens, respectively. Similarly, addition of 3% lime increased the UCS values
by 64%, 136%, 304% and 20% for P-, K-, V- and C-soil, respectively. It is clear that K- and
V-soil showed the highest improvement with lime. On the other hand, C-soil with the lowest

pH value showed the lowest enhancements in both Mg and UCS values.

4.4.2 Effect of CFA Content

It is evident from Figures 4.9 and 4.10 that there is a significant increase in Mg and
UCS with increasing CFA content in the treated soils. A maximum increase of 367%, 586%,
616%, and 95% was observed in Mg values for 15% CFA stabilized P-, K-, V- and C-soil,
respectively. Correspondingly, these different stabilized soil specimens showed an increase in
UCS values by 273%, 246%, 404%, and 100%. Clearly, V-soil specimens stabilized with

CFA showed better performance, as compared to other soils used in this study.
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4.4.3 Effect of CKD Content

It is evident that there is significant increase in the Mg with increasing amount of CKD
content in the stabilized soils (Figure 4.9). The Mg values in all soils exhibited an increase
with the amount of CKD. As depicted in Figure 4.9, in P-soil specimens the maximum
increase (about 638%) in Mg values was observed by adding 15% CKD. Similarly, 15%
CKD-stabilized K-, V- and C-soil specimens exhibited the maximum increase of
approximately 1061%, 1042% and 194%, respectively, compared to the raw soil. This trend in
Mg values for different CKD-stabilized clays is similar to that observed for M values. Hence,
similar reasons, as mentioned in the preceding section, can be used to justify this
performance. The variation of UCS values with the CKD content is illustrated in Figure 4.10.
It is observed that UCS values of all the soils used in this study increases as the amount of
CKD increases. For example, the UCS values increased by 521%, 500%, 717%, and 153% for
the P-, K-, V-, and C-soil specimens, respectively, when stabilized with 15% CKD. This
observation is consistent with that of Miller and Azad (2000), Sreckrishnavilasam et al.

(2007), and Pecthamparan and Olek (2008).

4.5 Stress-Strain Behavior

The stress-strain behavior of the four raw soils, 3% lime-, 10% CFA- and 10% CKD-
stabilized specimens are presented in Figures 4.11 to 4.14, respectively. A summary of failure
strain of all the raw and stabilized specimens is presented in Figure 4.15. It is evident from
Figure 4.11 to 4.15 that the addition of additives (lime or CFA or CKD) increased the peak
stress (or UCS) and reduced the peak strain (or failure strain) considerably. Figure 4.16 shows
the failure patterns of raw and stabilized C-soil specimens. As evident from Figure 4.16,

- specimens failed with an inclined failure plane or cylindrical shape/splitting.
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According to OHD L-50 (ODOT 2006), percentage of CFA/CKD that gives a
minimum strength of 50 psi but not more than 150 psi should be selected. Hence, for all the
four soils, only those percentages of CFA or CKD fulfilling the above mentioned criteria were
selected (Figure 4.17). For lime-stabilized soil specimens, amount of lime providing a
minimum pH of 12.3 were selected following the ASTM D 6276 requircments. A summary of
UCS of selected stabilized specimens is presented in Table 4.5. For P-soil (A-4), OHD L-50
(ODOT 2006) recommends use of 10% CKD or 12% CFA. For K-soil (A-6), OHD L-50
(ODOT 2006) recommends use of 12% CFA or 4% lime. For V-soil (A-6), OHD L-50
(ODOT 2006) recommends use of 12% CFA or 4% lime. For C-soil (A-7-6), OHD L-50
(ODOT 2006) recommends use of 5% lime. The OHD L-50 recommendations are comparable

to the results obtained in this study (Table 4.5).

4.6 Moisture Susceptibility

A summary of the final dielectric constants values (DV) for the P-, K-, V- and C-soil
stabilized specimens with different percentages of additives is summarized in Figure 4.18.
The raw P-, K-, V- and C-soil specimens showed an average DV of approximately 38, 38, 31

and 34, respectively.

4.6.1 Effect of Lime Content

It is clear that lime is most effective additive in reducing the moisture susceptibility of
the P-, K-, V-, and C-soil specimens. For example, 9% lime reduced DV of raw P-, V-, K- and
C-soil by 47%, 24%, 6%, and 26%, respectively. These results are consistent with the
observations made by Little (2000) and Barbu and McManis (2005). Little (2000) conducted

TST on low, moderate and high plasticity soils stabilized with lime. He found a decrease of
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DV for low plasticity soils from 6.5 to 4.7 (27.7% decrease) and suggested this as no
significant difference. However, a decrease of DV from 31.2 to 10 (67.9% decrease) for
moderate plasticity soil and 26.5 to 9 (64.1% decrease) for high plasticity soils was reported
as significant reduction. In contrast to the above observation by Little (2000), the present

study showed maximum improvement with soil having the lowest PI value (P-soil).

4.6.2 Effect of CFA Content

Figure 4.18 shows the effect of CF A-stabilization on the DV of P-, K-, V-, and C-soil
stabilized specimens. The same qualitative trends as lime-stabilized specimens were observed.
The DV decreased as the percentages of CFA increased up to 15%. The percentage decrease
in DV due to 15% CFA was found to be approximately 8%, 11%, 16% and 9% for P-, K-, V-
and C-soil specimens, respectively. It is an indication that CFA stabilization has more or less
same degree of effectiveness in reducing the moisture susceptibility for all the soils. It is also
worth noticing that CFA-stabilized specimens with P-soil showed a decrease in DV for 5%
CFA-stabilized specimens, while 10% and 15% CFA stabilized specimens exhibited only a
slight increase in the values (Figure 4.18). This may be attributed to the presence of extra
CFA in the specimen which is not reacting with the host material; hence it absorbs water

increasing the dielectric constant.

4.6.3 Effect of CKD Content

The variation of moisture susceptibility of P-, K-, V- and C-soil stabilized specimens
with the percentages of CKD is shown in Figure 4.18. The DV of K- and C-soil specimens
exhibited an increase with the percentages of CKD, an opposite trends as compared to lime-

and CFA-stabilized specimens. For example, K- and C-soil specimens prepared with 15%
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CKD showed an average increase of approximately 11% and 18% as compared to raw
specimens. On the other hand, CKD-stabilization in P- and V-soil specimens helped by
reducing DV values by 53% and 13%, respectively. Hence, CKD was found to be most

effective with P-soil specimens.

4.7 Three-Dimensional Swell Behavior

Figures 4.19 to 4.21 show final 60-day three-dimensional (3-D) swell values for
selected raw soils (K-, V- and C-soil) and stabilized specimens. Negative swells are a result of
drying of the specimens before placing them in water bath for the swell test. A summary of
final 60-day 3-D swell values is presented in Figure 4.22. Further, the effect of different

additives on 3-D swell values is discussed in the following section.

4.7.1 Non-sulfate Bearing Soil (K- and C-soil)

The effects of different additives on the percentage reduction in 3-D swell values of

K- and C-soil are presented in Figures 4.23 and 4.24, respectively.

4.7.1.1 Effect of Lime Content

For K- and C-soil stabilized specimens, the 3-D swell values decreased as the
percentage of lime increased up to 9 percent. For example, the K-soil specimens prepared
with 9% lime had an average 3-D swell value of -2.8% compared to 6.1% for raw specimens.
From Figures 4.23 and 4.24, it can also be concluded that the 3-D swell values of stabilized
materials varied with the type of soil. For example, 3% lime in K-soil stabilized specimens
reduces approximately 95% of raw soil swelling, whereas the same percent of lime in C-soil

reduces almost 1C00% swelling of raw soil specimens (Figure 4.23 and 4.24).
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4.7.1.2 Effect of CFA Content

Figure 4.22 shows the 3-D swell values of specimens stabilized with various
percentages of CFA. Similar to lime-stabilized specimens, 3-D swell values decreased with
the percentages of CFA. It is also obvious from Figures 4.23 and 4.24 that CFA stabilization
is more effective in reducing swelling of K-soil specimens as compared to C-soil specimens.
For example, 15% CFA reduced approximately 54% and 32% 3-D swell in K- and C-soil
specimens, respectively. CFA-stabilization, however, is less effective in reducing swelling, as

compared to lime.

4.7.1.3 Effect of CKD Content

In contrast to lime- and CFA-stabilized specimens, CKD-stabilized specimens showed
an increase in 3-D swell values as the percentages of CKD increased up to 15. The specimens
of K- and C-soil stabilized with 15% CKD showed an increase in 3-D swell by 98% and

113%, respectively. This issue has been further discussed in the following sections.

4.7.2 Sulfate Bearing Soil (V-soil)

The effect of different additives on the percentage reduction in 3-D swell values of V-

soil is presented in Figure 4.25.

4.7.2.1 Effect of Lime Content

The V-soil (sulfate content = 15,400 ppm) specimens stabilized with lime showed an
increase in 3-D volume. Addition of 3 percent lime increased the swelling of raw soil by
1237%. Swelling of lime-stabilized specimens can be attributed to the presence of high
soluble sulfate content in the V-soil, which could lead to the formation of an expansive

mineral ettringite, known as primary sulfate attack (see e.g., Mitchell, 1986; Mitchell and
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Dermatas, 1990; Rao and Shivananda, 2005). As discussed in Chapter-5, formation of
ettringite was verified by conducting mineralogical studies such as SEM/EDS and XRD

analysis.

4.7.2.2 Effect of CFA Content

It is evident from Figure 4.25 that V-soil stabilized specimens showed a reduction in
3-D swell values with CFA. For example, 5%, 10% and 15% CFA reduced 3-D swell of raw

V-soil specimens by approximately 40%, 75% and 145%, respectively.

4.7.2.3 Effect of CKD Content

Similar to non-sulfate bearing soils (K- and C-soil), the specimens of V-soil stabilized
CKD showed an increase in 3-D swell. For example, 15% CKD increased 3-D swell of raw

specimens by 593%.

4.7.3 Swell Assessment

The increase in swell of CKD-stabilized specimens can be attributed to the presence of
high soluble sulfate content in CKD, which will correspond to high soluble sulfate content in
the soil-CKD mix. In order to explain such a behavior, sulfate tests were performed on CKD-
stabilized specimens. Result showed that high soluble sulfate content (> 2,000 ppm) existed in
stabilized specimens, as shown in Figure 4.26. According to a study by Kota et al. (1996),
sulfate levels of greater than 2,000 ppm in soil-additive mix could potentially result in sulfate-
induced heaving due to the formation of expansive mineral ettringite. To confirm the
ettringite formation, SEM/EDS study was also conducted on representative tiny pieces of 15%
CKD-stabilized K-, V- and C-soil specimens, after 60 days of swelling, as will be discussed

later in Chapter-5. Sulfate present in additives, water, and spilled chemicals constitute the
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“secondary” sulfate source (Rao and Shivananda, 2005). Although there has been significant
research on the “primary” sulfate-induced heaving of stabilized subgrade soils (Hunter 1988;
Mitchell and Dermatas 1990; Petry and Little 1992; Rajendran and Lytton 1997; Rollings et
al. 1999; Puppala et al. 2004), only a few studies have identified and addressed the
“secondary” sulfate-induced heaving problems. For example, Hopkins and Beckham (1999)
observed swelling of highway subgrade stabilized with an additive (residue of atmospheric
fluidized bed combustion, AFBC). Mineralogical studies such as scanning electron
microscopy (SEM) and X-ray diffraction (XRD) analysis showed the presence of ettringite,
thaumasite, and gypsum throughout the AFBC-stabilized subgrades. Using chemical analyses
technique, the presence of high concentration (10%) of calcium sulfate in AFBC was also
found.

In a laboratory study, Miller and Azad (2000) observed soluble sulfate levels varying
from 2,270 to 25,800 ppm in CKDs from three different manufacturers. Their study, however,
focused on determining pH, Atterberg limits and UCS of soil stabilized with low sulfate
content CKD (6,450 ppm). In another laboratory study, Rao and Shivananda (2005) examined
“secondary” sulfate-induced heaving from spillage of sulfate rich chemicals. The objective
was realized by infiltrating laboratory prepared sodium sulfate solutions (sulfate
concentrations ranged from 13,500 to 27,000 ppm) on the heave characteristics of lime-
stabilized specimens that were practically free of natural sulfate. Experimental results
illustrated that lime-stabilized expansive soils experiencing sulfate contamination are
susceptible to sulfate-induced heave.

Mohamed (2002) observed one-dimensional swelling of specimens stabilized with

CKD. For example, raw and 10% CKD-stabilized specimen showed a 7-day swell value of
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0.1% and 0.4%, respectively. Swelling of CKD-stabilized specimens was attributed to the
formation of ettringite in the soil-CKD mix. It was also reported that formation of ettringite
depends on pH value greater than 11.7. In the current study, it is expected to have higher
swelling values because the ratio of 1-D swell to the 3-D swell is approximately 0.55 (Al-
Shamrani and Al-Mhaidib 2000). In addition, 60-day swell values should be higher compared
to 7-day values reported by Mohamed (2002).

In a recent combined laboratory and field study, Si and Herrera (2007) identified CKD
as a potential sulfate source. It was also found that the addition of more CKD increased
sulfate content in the pavement material. Further, increase in dielectric constant and
conductivity was also noticed for specimens stabilized with 2% CKD. But, no attempt was
made to evaluate and compare the Mr, one of the critical pavement performance parameters
(AASHTO 2004).

As noted from limited available literature, most of the studies identified a “secondary”
sulfate-induced heaving problem, but only few addressed this issue. It is also worth noticing
that properties of CKD can vary significantly from plant to plant depending on the raw
materials and type of collection process used (Miller and Zaman 2000). Similarly, fly ash
properties may be unique to same source while it may differ from ashes obtained from other
sources (Ferguson and Levorson 1999). These differences in physical and chemical properties
can lead to different performance of stabilized soil specimens. In the present study, for
example, CKD showed swelling of specimens due to high sulfate content (28,133 ppm), while

CFA with lower sulfate content (3,280 ppm) exhibited reduced swelling.
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4.8 Atterberg Limits

A summary of the Atterberg limits (after 28-day curing) for selected soil types,
namely, K-, V-, and C-soil, and percentage of additives are presented in Table 4.6 and Figure
4.27. It is observed that lime is the most effective additive in reducing plasticity index (PI). As
evident from Figures 4.28 to 4.30, all the three soil series used in the current study showed
similar trend of reductions in PI properties with lime. Reduction in PI values for lime-
stabilized soil specimens are well known and are attributed to chemical reactions between
lime and soils including ion exchange and associated flocculation reactions (see e.g.,
Prusinski and Bhattacharia, 1999; IRC, 2000).

Adding CFA and CKD to the soils also produced changes in the plasticity. The
percentage of reduction in PI was observed maximum with K-soil among all the three soils
(K-, V- and C-soil). For example, 15% CKD reduced PI values of K-, V- and C-soil by 67%,
18% and 21%, respectively. This could also be one of the reasons for highest improvement in
M; values of stabilized K-soil specimens, as discussed in section 4.3. However, effectiveness
of CFA or CKD in reducing the plasticity of soil is low as compared to lime (Figure 4.19).
One of the explanations could be less alkalinity (or pH) of CFA and CKD, as compared to
lime. Similar observations of unproductive effect of CKD on PI were reported by other

researchers (Parsons et al., 2004; Miller and Azad, 2000).

4.9 Parameter Ranking and Identification of Best Additives

An attempt is made here to rank the additives based on their contributions to
enhancements to soil properties of PI, UCS, M,, final 3-D swell and DV values. The
recommendations made by Nelson and Miler (1992), Wattanasanticharoen (2000) and Chavva

et al. (2005) were followed in the ranking analysis. It should be noted that the ranges for final
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dielectric constant were arbitrarily chosen. However, the arbitrary selection would not
influence the overall rank since the same ranking was used to characterize all stabilized soil
specimens.

The established ranking systems characterize the transformation of each soil property
from problematic to non-problematic levels. If the soil-additive mix condition is poor; it is
assigned a rank of zero. If the condition of the soil-additive mix is the best, the rank is given
as four. The rankings of 1 to 3 are given for the middle ranges of soil-additive mix properties
between severe and non-severe conditions. Table 4.7 shows the ranking scale for all the
parameters used in this analysis. The values for PI, UCS and M, were developed from the
documented literature information (Wattanasanticharoen 2000; Chavva 2005). The
recommendations made by Nelson and Miller (1992) were used for formulating vertical swell
values. The ratio of swell in the vertical direction to the volumetric swell was assumed to be
0.55 for converting vertical swell to 3-D swell (Al-Shamrani and Al-Mhaidib 2000).

All the ranks of each additive for various test results were compiled, averaged and
then presented as an overall rank (dR). Tables 4.8, 4.9 and 4.10 provide ranking scores for
stabilized K-, V- and C-soil specimens used in the present study. The OR value was used to
identify and select the best, medium and low performers among different additives. The
following discussion is presented for each additive based on the results observed on all three
soil types.

For lime, the OR ranged from 1.8 — 3.0. A maximum rank increase of 2.2 was
observed by this stabilization method. This finding indicates significant improvements in soil
properties were obtained with the lime-stabilization method. The best performance was

obtained when 9% lime was used to stabilize K-soil.
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For CFA, the OR of stabilized soils ranged from 1.2 — 3.0. A maximum rank increase
of 1.4 was observed with this stabilization method. This finding indicates that only moderate
improvements in soil properties were obtained with the CFA-stabilization. The best
performance was obtained with the sulfate-bearing soil (V-soil).

For CKD, the OR ranged from 0.8 — 2.8. A maximum rank increase of 1.2 was
observed with this stabilization method. This finding indicates that moderate improvements in
soil properties were obtained with the CKD-stabilization. The best performance was obtained
when 15% of CKD was used to stabilize P-soil.

When all additive results are grouped and compared with respect to the effectiveness
with different soils, 9% lime showed the best performance with the non-sulfate soils (K- and
C-soil). On the other hand, 15% CFA showed the best performance with the sulfate-bearing

soil (V-soil).

4.10 Statistical Analysis

As noted in Table 1.1, only a few number of models and correlations are available in
the literature for predicting M,, but those models are either limited to one type of additive (e.g.
Achampong, 1996 and Arora and Aydilek, 2005) or applicable only for a particular stress
level (e.g., Thompson 1966; Boyce 1980; Chen 1994; AASHTO 2004; and Hillbrich and
Scullion 2006). Only a few studies for e.g. Khoury and Zaman (2007) conducted statistical
analysis for predicting M; values by considering effect of different additive properties and
specimen properties at different stress levels. However, no studies, to the authors’ knowledge,
have addressed the statistical model for stabilized soil specimens correlating soil-additive mix

properties with M, values at different stress levels.
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4.10.1 Model Development

Literature review revealed several models to correlate the resilient modulus of
pavement materials with stresses. For example, Witczak (2000) reported that 14 models are
available for predicting the M; values of unbound pavement materials. In the present study,
the cyclic axial stress and confining pressure were used in the following form to predict the
resilient modulus:

Model-1(AASHTO 2004): This log-log model was selected because it is recommended by the

new MEPDG for unbound materials.

k, ks
M, = k,pa(i) (ﬁﬁ+]j (k1=0, k220, k3<0) (4.1)

a a

where, p, = atmospheric pressure (14.7 psi), 8 = bulk stress (sum of three principal stresses),
Toct = Octahedral shear stress acting on the material, and k;, k, and ks are the model constants.
Using the stepwise method of linear regression option in SAS 9.1, these model constants are
correlated with the soil-additive mix properties (e.g., dry density, moisture content, UCS, M)
and additive properties (percent of free lime, SAF, percent passing #325 and percent loss on
ignition).

k; =D}l x Mg? xUCS™ x SAF™ x P325% xLOI ; k,=-0.053; k;=-0.720  (4.2)

(R? = 0.914; Pr<0.0001)
where, Dy is ratio of molded dry density of specimen to maximum dry density, Mg is the
modulus of elasticity, UCS is the unconfined compressive strength and SAF, P325 and LOI
are the final product of the percentage and amount of SAF, passing No. 325 and loss on
ignition value for the additive used. A, through A are model constants with the following
values obtained from the regression analysis:, A; = 2.912, A, = 1.368, A3 = -0.233, A, =

0.133, As = -0.323 and A¢ = 0.150. The F test for the multiple regressions was conducted
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using statistical analysis software (SAS 2004) to validate the significance of the relationship
between M; and independent variable included in the model. The associated probability is
designated as p-value. A small p-value implies that the model is significant in explaining the
variation in the dependent variable.
Model-2 (Witczak 2000): This semi-log model was selected on the basis of previous studies
conducted on bound materials (Solanki et al. 2008)

M, =k xki x k> (4.3)

In a logarithmic form, the model can be written as:

logM, )=logk )+S, loglk, )+, logk;) (4.4)

This model is similar to semi-log ki, ks, k3 (S3, Sq) model reported by Witczak (2000)
and Andrei et al. (2004). Also, Khoury and Zaman (2007) used the same model to assess the
durability effect on the resilient modulus of stabilized aggregate bases. One of the advantages
of using the aforementioned semi-log model is that it is valid for either S3 =0 or Sq= 0.

This model correlating the variation of actual M; test values with the aforementioned
mix properties (stabilized soil specimen and additive) and stress levels was developed using
the stepwise method at a 0.15 level. The stepwise method consists of entering variables in the
final model at a certain significant level (0.15 significant level was used in this study). It was
statistically found that the final model of predicting M; is a function of additive properties
(i.e., amount of SAF, percent passing No. 325 and loss on ignition value), mechanical
properties of the mixture (i.e. Mg and UCS), and stress levels. The model is given in the

following equation:
M, = A, x M2 xUCS™ x SAF* x P325% x LOI"® x 4} x A3* (4.5)

(R = 0.927; Pr<0.0001)
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where, Mg is the modulus of elasticity, UCS is the unconfined compressive strength, Sy is
deviator stress, and Ss is confining pressure. SAF, P325 and LOI are the final product of the
percentage and amount of SAF, passing No. 325 and loss on ignition value for the additive
used, respectively. The regression analysis yields the following coefficients: 4; = 0.253, 4, =
1.462, A3 = -0.313, 44 = 0.141, 45 = -0.279, 45 = -0.139, 4; = 0.995 and As = 1.002. The
relative effects of mechanical properties of mixture and chemical properties of additive are
summarized in Table 4.11. The analysis of variance (ANOVA) results show that the effects of
Mg, UCS, SAF, P325, LOI and stress levels is statistically significant at a = 0.05 (i.e.,
p<0.05). The corresponding R value is 0.927 and the F-value is 543 with a Pr<0.0001, which
indicates that the model is considered statistically significant in predicting the variation of M,
values with stress level and type of additive. Since Model-1 and Modle-2 yiclded very similar
R? values, Model-2 was selected for validation because of added advantage of validity of this

model at S; =0 or S4= 0.

4.10.2 Validation of Model

The selected model-2 was validated using resilient modulus data of P-soil, as
mentioned previously. This provides different views on the prediction quality and the
importance of datasets on statistical analysis (Myers et al. 2001; Montgomery et al. 2006). A
comparison between the predicted M; values and the actual M; values is illustrated in Figure
4.31. From this figure, it is evident that the scatters for stabilized K- as well as P-soil are
around the 45° line. It is also evident that the predicted values are closer to the equality line
when the M; values are less than 2,500 MPa for both K- and P-soil. This observation may be
due to the distribution of dataset. For K-soil, only 44 M, values out of 313 M, values

(approximately 14%) are in the upper range of 2,500 MPa. Similarly, 59 M; values out of 326
y pp g
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M; values (approximately 18%) are in the upper range of 2,500 MPa. The remaining 86% and
82% of the M, values for this study are in the lower range of the development dataset for K-
and P-soil, respectively. Furthermore, a frequency histogram was plotted to compare the
predicted M, values for both stabilized K- as well as P-soil, as illustrated in Figure 4.32. The
trend clearly shows the similar kind of trend and magnitude of error for both K-
(development) and P- (validation) soil. This discussion indicates that such a model could be a
good indicator in making performance predictions of resilient modulus of stabilized soil

specimens.
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Table 4.1 Variation of pH Values with Soil and Additive Type

Type of Additive P-soil K-soil V-soil C-soil
Additive Content pH % pH % pH % rH %
(%) value Increase value [ Increase | value | Increase | value | Increase
0 8.91 0.0 9.07 0.0 8.14 0.0 4.17 0.0
1 12.24 37.4 12.04 32.7 11.67 434 9.22 121.1
3 12,43 39.5 12.49 37.7 12.41 52.5 12.23 193.3
Lime 5 12.45 39.7 12.5 37.8 12.49 534 12.54 200.7
6 12.45 39.7 12.54 38.3 12.52 53.8 12.58 201.7
7 12.46 39.8 12.57 38.6 12.52 53.8 12.61 202.4
9 12.47 40.0 12.57 38.6 12.52 53.8 12.63 202.9
100 12.58 41.2 12.58 38.7 12.58 54.5 12.58 201.7
0 8.91 0.0 9.07 0.0 8.14 0.0 4.17 0.0
2.5 10.97 23.1 10.03 10.6 10.4 27.8 5.19 24.5
5 11.3 26.8 10.83 194 10.85 333 5.93 42.2
7.5 11.39 27.8 11.28 24.4 11.05 35.7 6.55 57.1
CFA 10 1.5 29.1 11.42 25.9 11 35.1 7.79 86.8
12.5 11.59 30.1 11.5 26.8 11.15 37.0 8.32 99.5
15 11.6 30.2 11.57 27.6 11.19 37.5 8.86 112.5
17.5 11.62 30.4 11.61 28.0 11.38 39.8 9.47 127.1
100 11.83 32.8 11.83 304 11.83 453 11.83 183.7
0 8.91 0.0 9.07 0.0 8.14 0.0 4.17 0.0
2.5 11.35 27.4 11.11 22.5 10.99 35.0 7.05 69.1
5 11.88 333 11.73 29.3 11.59 42.4 8.8 111.0
7.5 12.09 35.7 12 323 11.79 44.8 10.11 142.4
CKD 10 12,22 37.1 12.15 34.0 12.04 479 10.88 160.9
12.5 12.31 38.2 12.23 34.8 12.24 50.4 11.28 170.5
15 12.36 38.7 12.3 35.6 12.32 51.4 11.62 178.7
17.5 12.38 38.9 12.36 36.3 12.38 52.1 11.98 187.3
100 12.55 40.9 12.55 384 12.55 54.2 12.55 201.0
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Table 4.5 Summary of Failure Strength of Stabilized Specimens Fulfilling ASTM D 6276
Requirements for Lime-Stabilization and OHD L-50 Criteria for CFA- and CKD-

Stabilization
P-soil
Additive Lime CFA CKD
Percentage 3 6 9 5 10 15 5 10 15
UCS (psi) 54 57 67 -—- - 123 - 142
K-soil
UCS (psi) 66 76 68 - - 97 - 113 168
V-soil
UCS (psi) 97 75 82 - 94 121 -— 131 -
C-soil
UCS (psi) - 57 47 - - --- - - -—-

Table 4.6 Summary of Atterberg Limits of 28-Day Cured Stabilized Soil Specimens

Percentage K-soil V-soil C-soil
of Additive | LL | pL | P | L [ PL | PI | LL | PL | PI
Raw Soil
0 | 39 | 18 | 21 | 37 | 26 | 11 | 58 | 29 | 29
Lime
3 37 | 27 [ 10 [ 49 ] 4a | 5 [ 51 ] 26 | 25
6 NP | NP | NP | 51 | NP | NP | 51 | NP | NP
9 Np | Np | NP | 48 | NP | NP | 43 | NP | NP
CFA
5 35 | 17 | 18 [ 40 [ 30 [ 10 | 50 [ 23 | 27
10 36 | 25 | 11 [ 37 [ 30 7 |46 [ 25 | 2
15 34 | 22 [ 12 |39 ] 33 [ 6 | 43| 24 | 19
CKD
5 38 | 21 | 17 |38 | 27 | 11 | 52| 25 | 27
10 37 | 24 | 13 | 40 | 28 | 12 | 52 | 24 | 28
15 42 | 35 7 | 43 [ 34| 9 [ 52 ] 29 | 23

LL: Liquid Limit; PL: Plastic Limit; PI; Plasticity Index
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Table 4.7 Ranking Scale of Soil-Additive Mix

Plasticity | UCS® Resilient 3-D Swell*“ | Dielectric Rank
Index” (psi) Modulus® (psi) (%) Constant
0-5 >232 > 87,083 0-—0.90 <21 4
6—15 174 — 232 | 58,055 — 87,083 0.91-2.70 21-25 3
16 —25 102-174 | 29,028 - 58,055 2.71-7.30 26 — 30 2
>25 58 —102 14,514 — 29,028 >7.30 31-35 1
> 50 <58 < 14,514 > 14.50 > 35 0
"Wattanasanticharoen (2000); "Chavva (2005); “Nelson and Miller (1992); “Al-Shamrani and Al-Mhaidib
(2000)

Table 4.8 Individual Rank and Overall Rank of K-soil Stabilized with Different Additives

Additive P1 UCS M, 3-DS DV OR
None 2 0 0 2 0 0.8
3% Lime 3 1 4 4 0 2.4
6% Lime 4 i 4 4 1 2.8
9% Lime" 4 1 4 4 2 3.0
5% CFA 2 1 3 2 i 1.8
10% CFA 3 1 4 7 1l 22
15% CFA 3 1 4 2 il bT)
5% CKD 2 0 2 1 0 1.0
10% CKD 3 2 4 1 0 2.0
15% CKD 3 2 4 1 0 2.0

PI: Plasticity Index; UCS: Unconfined Compressive Strength; M;: Resilient Modulus; 3-DS:
Three-Dimensional Swell; DV: Dielectric Value;

OR: Overall Rank = (Ranks of PI + UCS + FS + M, + 3-DS + DV)/4

*Additive content providing maximum OR value

Table 4.9 Individual Rank and Overall Rank of V-soil Stabilized with Different Additives

Additive PI UCS M, 3-DS DV OR
None 3 0 1 4 1 1.8
3% Lime 4 1 4 1 1 2.2
6% Lime 4 1 4 1 2 2.4
9% Lime 4 1 4 1 2 2.4
5% CFA 3 0 4 4 2 2.6
10% CFA 3 1 4 4 2 2.8
15% CFA" 3 2 4 4 2 3.0
5% CKD 3 0 3 4 2 2.4
10% CKD 3 2 4 3 2 2.8
15% CKD 3 3 4 2 2 2.8

PI: Plasticity Index; UCS: Unconfined Compressive Strength; M;: Resilient Modulus; 3-DS:
Three-Dimensional Swell; DV: Dielectric Value;

OR: Overall Rank = (Ranks of PI + UCS +FS + M, + 3-DS + DV)/4

*Additive content providing maximum OR value
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Table 4.10 Individual Rank and Overall Rank of C-soil Stabilized with Different Additives

Additive PI UCS M, 3-DS DV OR
None 1 0 1 2 1 1.00
3% Lime 2 0 2 4 1 1.80
6% Lime" 4 0 3 4 2 2.60
9% Lime" 4 0 2 4 3 2.60
5% CFA 1 0 2 2 1 1.20
10% CFA 2 0 7 2 1 1.40
15% CFA 2 1 2 2 1 1.60
5% CKD ) 0 2 1 0 0.80
10% CKD | 0 3 1 0 1.00
15% CKD 2 1 4 0 0 1.40

PI: Plasticity Index; UCS: Unconfined Compressive Strength; M,: Resilient Modulus; 3-DS:
Three-Dimensional Swell; DV: Dielectric Value;

OR: Overall Rank = (Ranks of PI + UCS +FS + M, + 3-DS + DV)/4

*Additive content providing maximum OR value

Table 4.11 A Summary of the Statistical Analyses of K-soil Stabilized with Lime, CFA and

CKD
Type of % of - S S3 Calculat
Yp % M, =k x (kp)™ x (k3) R F-value Pr Signiﬁcanta ) 4 'ed
additive additive k, k, ks M, (psi)
None 0 102,135 0.986 1.002 0.990 30.12 <0.0001 Yes 8,779
3 1,158,283 0.998 1.001 0.820 27.26 <0.0001 Yes 155,752
Lime 6 1,271,743 0.993 1.002 0929 79.00 <0.0001 Yes 149,500
9 851,970 0.995 1.002 0.928 77.89 <0.0001 Yes 106,957
5 475,174 0.992 1.006 0913  62.60 <0.0001 Yes 59,695
CFA 10 935,300 0.998 1.001 0.687 13.18 <0.0001 Yes 126,500
15 996,051 0.999 1.000 0.692 1348 <0.0001 Yes 137,750
5 640,294 0.989 1.003 0.879 43.57 <0.0001 Yes 64,211
CKD 10 2,965,888  0.991 1.000 0.910 4535 <0.0001 Yes 297,104
15 2,716,952  0.997 1.000 0.891 36.74 <0.0001 Yes 357,877

*Significant at probability level (alpha) =0.05; bMr values calculated at S, = 6 psi, S; =4 psi
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CHAPTER 5 SOIL SUCTION, PERMEABILITY AND MINERALOGICAL STUDIES

5.1 General

This chapter presents the efforts that were made to determine the soil suction, and
permeability of selected stabilized soil specimens. An overview of the results is presented and
problems that were faced are discussed. In addition, results of mineralogical studies such as
X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and scanning electron

microscopy (SEM) performed on selective stabilized specimens are also presented.

5.2 Soil Suction

Only few studies were conducted for determining soil suction parameters (total,
matric, and osmotic suction) of stabilized soil specimens. For example, Puppala et al. (2006)
used pressure plate apparatus for determining suction parameters of soil stabilized with fly
ash. In a recent study, Petry and Jiang (2007) used a Dewpoint Potentiometer for evaluating
suction parameters of soil stabilized with hydrated lime and KIS (solution containing potash
and ammonium lignosulfonate). They also correlated soil suction with soil properties.

In this study, soil suction tests were conducted on the P- and K-soil specimens already
tested for resilient modulus (M;) and/or tube suction test (TST). At the conclusion of each
resilient modulus test, specimens were sliced into five layers. Each layer was divided into five
parts. Four of these parts were used to determine the moisture content, and one part for
suction. Soil suction tests were performed using the filter paper technique according to the
ASTM D 5298 test method. The filter paper moisture contents were converted to matric
suction using the calibration curves in ASTM D 5298.

The average results for P-soil specimens are presented in Table 5.1. It is evident that

stabilization of P- and K-soil with different additives, namely, lime, CFA and CKD,
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influences the soil suction parameters. For example, raw P-soil specimen and 6% lime-
stabilized P-soil specimen compacted at similar moisture content showed an increase in total
suction value by approximately 292%. Table 5.2 shows average suction test results conducted
on K-soil specimens compacted at OMC and MDD, as discussed in Chapter-2. It is clear that
all the additives used in this study influence suction parameters. Specimens stabilized with
3% lime showed an average total suction value of approximately 1928 kPa. However,
specimens stabilized with 5% CFA and 5% CKD showed an average total suction value of

approximately 2950 and 1164 kPa, respectively.

5.3 Permeability

In this study, efforts were made to conduct permeability on raw and stabilized soil
specimens. A literature review was conducted for deciding the type of device needed for this
study. Table 5.3 shows the summary of literature review of permeability test on stabilized soil
specimens. Since no standard device or method was available for permeability test on
stabilized specimens, it was decided to manufacture own permeability device. Hence, a new
device shown in Figure 5.1 was manufactured at the University of Oklahoma to perform these
tests.

The mixture for each permeability specimen, consist of raw soil blended with a
specific amount of stabilizer. The amount of stabilizer was added based on the dry weight of
the soil. After the blending process, a desired amount of water was added based on the
optimum moisture content (OMC). Then, the mixture was compacted in a standard Proctor
mold having a diameter of 101.6 mm (4.0 in) and a height of 115.8 mm (4.6 in) to reach a dry
density between 95%-100% of the maximum dry density (MDD). After compaction,

specimens were cured at a temperature of 23.0 £ 1.7° C and a relative humidity of
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approximately 96% for 1-day. A total of two replicates were prepared for each combination.
After curing, the mold was inverted and placed between two platens and sealed with gasket to
avoid any leak, as shown in Figure 5.1. A water pressure was applied until a uniform water
flow was obtained. After that, the flow and the time were recorded to determine the
permeability. Two different water pressure heads of 213 cm (7.0-ft.) and 274 cm (9.0-ft.) were
applied in this study. The permeability results of raw and stabilized P-soil specimens are
presented in Table 5.4. The results for a water head of 274 cm are plotted in Figure 5.2, which
show an increase in permeability with the increase in the percentage of lime. This is
consistent with the observations made by Nalbantoglu and Tuncer (2001). They explained the
increase in permeability with an increase in lime content due to pozzolanic reactions. The
formation of lime particle aggregates results in the soil becoming more granular in nature and
results in higher resistance to compression at similar stress levels. This produces a soil with a
more open fabric and results in an increase in permeability. As evident from Figure 5.2, CKD-
stabilized specimens exhibited higher permeability as compared to lime-stabilized specimens.
This can be further attributed to the formation of cementitious reaction products during
pozzolanic reactions.

Table 5.5 shows permeability test results of selective K-soil stabilized specimens.
Results were in the range of 10 to 107 cm/s for stabilized specimens. Permeability of raw
and stabilized specimens and the effect of different additives types, and additive content is a

significant study by itself, and hence only selective specimens were tested.

5.4 Mineralogical Studies

To facilitate macro-behavior comparison and explanation, the mineralogical study

techniques such as Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy
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(EDS) and X-Ray Diffraction (XRD) were employed to qualitatively identify the micro-

structural developments in the matrix of the stabilized soil specimens.

5.4.1 Test Procedure

The Scanning Electron Microscopy (SEM) technique was employed using a JEOL
JSM 880 microscope to qualitatively identify the micro-structural developments in the matrix
of the stabilized soil specimens (Figure 5.3). After the UCS/TST test on specimens, broken
mix was air-dried for approximately four days. Three representative tiny pieces were mounted
on stubs (1 cm wide discs that have a pin-mount on the base of the disc) as shown in Figure
5.4. Then, pieces were coated with a thin layer (= 5 nm) of Iridium by sputter coating
technique to provide surface conductivity. A JEOL JSM 880 scanning electron microscope
operating at 15 kV was used to visually observe the coated specimens. The JEOL JSM 880
was fitted with an energy-dispersive X-ray spectrometer (EDS). The EDS was used to analyze
chemical compositions of the specimen. In this technique, electrons are bombarded in the area
of desired elemental composition; the elements present will emit characteristic X-rays, which
are then recorded on a detector. The micrographs were taken using EDS2000 software.

To confirm the SEM results, X-ray diffraction (XRD) tests were performed using a
Rigaku D/Max X-Ray diffractometer (Figure 5.5). Four-day air dried mix was pulverized with
a mortar and pestle, sieved through a U.S. standard No. 325 sieve (45 pm) and the powder of
less than 45 pm was collected and placed on a glass specimen holder prior to testing as
evident from Figure 5.6. This holder was then mounted on a Rigaku D/Max X-ray
diffractometer for analysis. This diffractometer is equipped with bragg-brentano parafocusing
geometry, a diffracted beam monochromator, and a conventional copper target X-ray tube set

to 40 kV and 30 mA. The measurements were performed from 5° to 70° (20 range), with 0.03°
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step size and 1 seconds count at each step. Data obtained by the diffractometer were analyzed
with Jade 3.1, an X-ray powder diffraction analytical software, developed by the Materials
Data, Inc. (Jade, 1999). Generated diffractograms (using the peaks versus 26 and d-spacing)

were used to determine the presence of ettringite.

5.4.2 Assessment of Strength/Stiffness

Figure 5.7 shows SEM micrographs of raw soil samples at high magnification (x1,000
and x10,000). 1t is clear that the raw soil has a discontinuous structure, where the voids are
more visible because of the absence of hydration products. The raw additives used in this
study were also studied using SEM/EDS methods. Figures 5.8, 5.9 and 5.10 show SEM/EDS
of raw lime, CFA and CKD powder, respectively. As evident from Figure 5.8, raw lime is an
amorphous powder consisting mainly of calcium compounds. This is in agreement with the
XRF results reported in Chapter 2 (see Table 2.3). On the other hand, CFA and CKD are more
complex compounds (Figures 5.9 and 5.10). EDS results indicated presence of calcium,
aluminum, silicon, sulfur, phosphorous, titanium, iron, and magnesium minerals in CFA.
Whereas EDS results of CKD indicated presence of calcium, silicon, magnesium, sulfur, and
potassium minerals. The SEM micrographs of raw CFA showed that CFA is composed of
different size spherical particles (or cenosphere); however, CKD micrographs showed

particles with poorly defined shapes.
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To study the comparative K- and C-soil strength/stiffness behavior, 28-day UCS tested
specimens were studied using SEM micrographs (Figure 5.11). One common characteristic of
all the stabilized soil specimens was the abundance of hydration products. As noted earlier,
stabilized K-soil specimens exhibited higher strength and stiffness values (see Figure 4.5 and
4.6). It is an indication that the development of cementing products with various percentages
is responsible for such a difference. It is expected that more cementing compounds are formed
in K-soil specimens and hence higher strength/stiffness values are obtained compared to C-
soil. This observation is visually evident from Figure 5.11 that more hydration coating and
needle-like hydration products are formed in stabilized K-soil specimens compared to C-soil

specimens, as expected.

5.4.3 Assessment of Sulfate-Induced Heave

As noted earlier, V-soil specimens stabilized with lime and all CKD-stabilized
specimens showed higher swell values as compared to raw soil specimens (see Figure 4.16).
This swell behavior can be attributed to the formation of ettringite
{Cag[Al(OH)]2.(SO4)3.26H,0} due the reaction of calcium ions of the stabilizer with free
alumina and soluble sulfates in soils, causing expansion of up to 250 percent when completely
formed (Hunter, 1988; Berger et al., 2001). To confirm the formation of ettringite, SEM/EDS
and XRD studies were conducted on representative tiny pieces of specimens tested for TST/3-
D swell. Figures 5.12, 5.13 and 5.14 show SEM/EDS test results for 15% CKD-stabilized K-
soil, 9% lime-stabilized, and 15% CKD-stabilized V-soil specimens, after 60-days of
swelling. Elemental composition of soil specimen was analyzed on ncedle-shaped crystals

using EDS. This elemental analysis showed the presence of calcium (Ca), sulfur (8S),

86



aluminum (Al) and/or oxygen (O), which are the main components for the formation of
ettringite mineral.

Further, to confirm the ettringite formation, XRD tests were also conducted on 9%
lime- and 15% CKD-stabilized V-soil specimens. For comparison raw soil was also tested, as
shown in Figures 5.15 (A-C). Figure 5.15 (A) indicate that no ettringite peaks were noticed in
the raw V-soil. The ettringite peaks were observed for 9% lime- and 15% CKD-stabilized V-
soil specimens. This substantiates that in-situ formation of ecttringite resulted in heaving as
noted in Figure 4.16. Furthermore, the ettringite traces detected in 9% lime-stabilized soil
were of higher intensity level as compared to 15% CKD-stabilized specimen, as a result, 9%
lime-stabilized V-soil undergo higher sulfate induced heaving, as indicated in Figure 4.16.
Based on SEM, EDS and XRD studies, it can be concluded that the ettringite was formed in

lime- and CKD-stabilized specimen which yielded 3-D swelling.
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Table 5.1 Soil Suction Parameters of Stabilized P-soil specimens

Type of | Percent of | Moisture Matric Total Suction | Osmotic
Additive | Additive Content (%) | Suction (psi) | (psi) Suction (psi)

None 0 9.9 168.7 317.7 149.1

0 17.3 1.5 95.9 94.5

3 14.3 103.3 274.6 171.3

6 14.2 73.4 211.0 1374

Lime 6 17.3 4.1 376.5 3724

9 18.6 4.1 117.9 113.6

9 20.5 2.0 2149 212.8

5 143 22 128.9 126.9

CFA 10 13.4 33 134.3 130.9

15 14.6 2.0 83.2 81.1

5 13.9 41.9 323.1 281.1

18.4 0.7 94.9 94.2

CKD 10 143 38.6 2219 183.3

10 19.1 2.0 115.8 113.8

15 143 16.3 109.1 92.9

15 19.0 1.0 1129 111.9

Table 5.2 Soil Suction Parameters of Stabilized K-soil specimens

Type of | Percent of Moisture | Matric Suction | Total Suction Osmotic
Additive | Additive | Content (%) (kPa) (kPa) Suction (kPa)
None 0 16.1 13.1 234.5 221.5
3 15.6 19.6 279.8 260.4
Lime 6 159 | 17.3 139.8 122.5
9 17.9 10.0 46.4 36.6
5 12.7 4.5 428.2 423.7
CFA 10 14.8 5.4 350.8 3454
15 14.9 11.2 269.7 258.5
5 17.2 5.8 168.9 163.1
CKD 10 17.0 5.5 321.5 3158
15 17.3 6.8 341.8 335.1
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Table 5.4 Permeability Values of P-soil Stabilized Specimens

Type of Additive | Percentage of Additive Water Head (cm) Permeability (cm/s)
None 0 213 *
0 274 B
3 213 *
3 274 2.064 x 107
6 213 8.850 x 107
Lime &
6 274 1.065x 10
9 213 6.050 x 107
9 274 1.060 x 10°
5 213 *
5 274 o
ik 10 213 *
10 274 i
15 213 *
15 274 *
5 213 7.210x 10°
5 274 7.585x 10°
10 213 3.566 x 10
CKD
10 274 5.147x 10°¢
15 213 1.978 x 107
15 274 2.060 x 107

*Samples were tested at a head > 600 cm, but no permeability was observed in 48 hours.
Hence, samples were discarded.

Table 5.5 Permeability Values of K-soil Stabilized Specimens

Type of Additive | Percentage of Additive | Water Head (cm) Permeability (cm/s)
0 213 *
None
0 274 *
_ 3 213 2.459 x 10"
Lime
3 274 5.860 x 107
5 213 1.022 x 10°
CFA
5 274 2.973x 107
*
CKD 5 213
5 274 *

*Samples were tested at a head > 600 cm, but no permeability was observed in 48 hours.
Hence, samples were discarded.
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Figure 5.1 Photographic View of Permeability Device used in this Study
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Figure 5.2 Variation of Permeability of P-soil with Percentage of Additives
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Figure 5.4 Specimen Mounted on Stubs for SEM
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Figure 5.6 Specimen Powder Glued on Glass Plates for XRD
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(c) (d)
Figure 5.7 SEM Micrographs of Raw (a) P-, (b) K-, (c) V-, and (d) C-soil Specimens
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Figure 5.8 SEM/EDS of Raw Lime Powder
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Figure 5.9 SEM/EDS of Raw CFA Powder
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Figure 5.10 SEM/EDS of Raw CKD Powder
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Figure 5.11 SEM Micrographs of the Indicated 28-Day Stabilized Soil Specimens
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10.

Figure 5.12 SEM/EDS of Ettringite Deposited in the 15% CKD-Stabilized K-soil Specimens
(After 60-Day Swell)
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2. L2

Figure 5.13 SEM/EDS of Ettringite Deposited in the 9% Lime-Stabilized V-soil Specimens
(After 60-Day Swell)
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5.

Figure 5.14 SEM/EDS of Ettringite Deposited in the 15% CKD-Stabilized V-soil Specimens
(After 60-Day Swell)
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Figure 5.15 X-Ray Diffraction Results of Stabilized V-soil Specimens (After 60-Day Swell)
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CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

From the laboratory tests and analysis of data presented in the preceding chapters, the

following conclusions can be drawn:

1.

The Proctor results on all of the soils showed an increase in OMC and a decrease in MDD
with increasing amount of lime and CKD. However, no such specific trend was observed
with CFA.

The resilient modulus, modulus of elasticity and unconfined compressive strength of
stabilized soil specimens are higher than the corresponding resilient modulus of raw
specimens. The percentage of increase depends upon many factors such as type of

stabilizing agent, percentage of stabilized agent, and soil type.

. All three stabilizers improved the resilient modulus of P-, K-, V- and C-soil specimens. At

lower application rates (3% to 6%), the lime-stabilized soil specimens showed the highest
improvement in the M; values. At higher application rates (10% to 15%), however, CKD
treatment provided maximum enhancements. Overall, K-soil and C-soil specimens
showed the highest and the lowest improvements in the M, values. One of the
explanations could be differences in the pH values of K- and C-soil. For example, raw K-
and C-soil had the highest and the lowest pH value of 9.07 and 4.17, respectively, among
the four soils used iﬁ this study.

The addition of additive, namely, lime, CFA or CKD, increased the unconfined

compressive strength and reduced the failure strain.
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. The TST results revealed that lime- and CFA-treatment helps reduce the moisture
susceptibility. CKD-stabilization, however, makes stabilized specimens more susceptible
to moisture, as compared to raw soil specimens.

. The three-dimensional swelling tests on non-sulfate bearing soil (P-, K- and C-soil)
showed that lime is more effective in reducing the swell of raw specimens, as compared to
CFA and CKD. In contrast to lime and CFA, an increase in the percentage of CKD makes
specimens more susceptible to moisture and three-dimensional swell. It is believed that
such an increase in volume is due to the presence of high sulfate content (28,133 ppm) in
CKD causing sulfate-induced heaving (ettringite formation).

. The three-dimensional swelling test on sulfate bearing soil (V-soil) showed an increase in
volume for lime- and CKD-stabilized specimens while a reduction in volume for CFA-
stabilized specimens was observed, as compared to raw soil specimens. This increase in
volume is attributed to sulfate-induced heaving which results in the formation of
expansive mineral ettringite. Further, presence of ettringite was verified using SEM/EDS
tests in conjunction with XRD analysis.

. All the three additive used in this study, namely, lime, CFA and CKD, are effective in
reducing the plasticity of soils. However, lime-stabilization is more effective as compared
to CFA and CKD-stabilzation in reducing the PI of soils. In addition, the percentage of
reduction in PI was observed maximum with K-soil among all the three soils (K-, V- and
C-soil). This could also be one of the reasons for the highest improvement in M; values of
stabilized K-soil specimen, as reported in conclusion # 3.

Ranking of all additives on the basis of different properties evaluated in this study

suggested that 9% lime is the best additive for non-sulfate bearing soil (K- and C-soil). On
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10.

11.

12.

the other hand, 15% CFA is the best additive for sulfate bearing soil (V-soil).

Regression equations were developed for the lime-, CFA- and CKD-stabilized soil to
estimate M; values. Predicted values were well correlated with measured values.

The SEM analysis shows formation of hydration products with soil matrix as a result of
stabilization. Tt is reasoned that the hydration products within the matrix provide better
interlocking between the particles and possible higher resistance to shear deformation and
also reduce void within the matrix resulting in overall strength gain. The results of the
analysis conform to the results of the M;, Mg and UCS tests.

To rationalize swelling behavior of CKD-stabilized specimens, presence of ettringite was

verified using SEM/EDS tests. This was also conformed using XRD analysis.

6.2 Recommendations

The following recommendations are made for further studies:

1.

As indicated in this study, strength (UCS) and stiffness (M;, Mg) evaluation alone can be
misleading. In the present study, for example, CKD showed better UCS, M, and Mg
values but increase in volume during 3-D swell testing. It is also worth noticing that
properties of CKD can vary significantly from plant to plant depending on the raw
materials and type of collection process used (Miller and Zaman 2000). Similarly, fly ash
properties may be unique to same source while it may differ from ashes obtained from
other sources (Ferguson and Levorson 1999). These differences in physical and chemical
properties can lead to different performance of stabilized soil specimens. In the present
study, for example, CKD showed swelling of specimens due to high sulfate content
(28,133 ppm) while CFA with lower sulfate content (3,280 ppm) helped by reducing

swelling. Hence, it is suggested that a proper mix design be done with locally available
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traditional stabilizers considering all the performance parameter, namely, strength,
stiffness, moisture susceptibility, and swell. Such designs, including the type and amount
of additive, will ensure compatibility and satisfactory performance.

. This study showed that CFA is the best additive for stabilizing sulfate bearing soil.
However, this study was limited to only one sulfate bearing soil. Further, performance of
CFA should be evaluated with other sulfate bearing soils.

. This study evaluated only three (strength, stiffness and durability) out of the required four
categories that have been identified as key to performance (AASHTO, 2004). Further
study is needed to evaluate and compare the fatigue fracture of subgrade soils stabilized
with lime, CFA and CKD, for an overall pavement performance evaluation.

. From the literature review conducted, there is no standard test available to evaluate the
durability of soil specimens stabilized with lime, CFA and CKD. The “conventional”
ASTM test (ASTM D 559/560) for soil-cement, however, are considered ovetly severe
and abrasive and do not simulate the field conditions adequately (Kalankamary and
Donald 1963; Miller and Zaman 2000). Moreover, Little et al. (2005) have emphasized
the need for developing a rapid and reliable test method for assessing the impact of
moisture on stabilized materials. Hence, it is important to conduct additional studies to
develop standardized durability test procedures addressing the effects of F-T/W-D actions
on stabilized subgrade soil. Also, it is important to explore the combined effect of both F-
T and W-D cycles on M; values and other properties. A current research study entitled
“Tube Suction Test for Evaluating Durability of Cementitiously Stabilized Soils” at the
University of Oklahoma is an attempt to verify that the tube suction test for evaluating

durability of stabilized soil specimens.
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5. Flexural strength and fatigue life influence the structural response and fatigue
performance of a stabilized subgrade soil layer. Therefore, it is recommended that studies
be conducted focusing on the evaluation of fatigue parameters for soil layer stabilized
with lime, CFA or CKD, commonly used additives by Oklahoma Department of

Transportation.
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